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ABSTRACT 

We study possible cosmological solutions to N ‘2 ‘l D = 10 supergravity with the 

Yang-Mills field strength aet to zero and show that the model accepts both power law 

solutiona and exponential solutions in the large time lit. The stability of these solutions 

is investigated. It is found that a shriiing internal space in compatible with several field 

configurations. Using a stable power law solution we analysed the conditions to obtain 

enough inflation in the physical Bpace from the ehrii internal dimensions. We &o 

ahow that for a flat topology a de Sitter phase ia poesible for late times. We used the 

consistency with the density perturbations to 5x the in5ationary parameter. 
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In the quest for the unification of the fundamental interactions, Super-string theories’ 

are presently considered as the best candidate. Indeed, while the alliance of local super- 

symmetry with higher dimensional theories offered the possibility of obtaining the full N=g 

supergravity action in four dimensions via dimensional reduction of N=l supergravity in 

11 dimensions3, the ultra violet divergences that were already present in four dimensional 

calculations of graviton and matter loop corrections did not get appreciably milder when 

going to higher dimensional supersymmetric theories. Thus, the proof that superstrings 

are anomaly free at 1 loop for SO(32) or Ea x Es 3 , plus their finiteness’ to at least that 

order, has triggered a great deal of action in the complete formulation of the correct theory 

with acceptable phenomenological predictions5. 

A related question of great importance is the cosmological implications of string theo- 

ries. Beyond the Planck scale, the drastic changes that are brought up by the inclusion of 

the massive modes as intermediaries of gravitational interactions are surely going to have 

important consequences in our understanding of the initial singularity, as some recent work 

on the subject has shown6, although still in a superficial way. As we lower the energy, the 

massive modes are frozen out of equilibrium and the string is thought to collapse to a point, 

with the massless modes being related to massless fields described by a local field theory. 

The type of field theory obtained is related to the way the string theory is formulated, i.e. 

being it an open or closed string theory or by the number of supersymmetry generators (ii 

any) involved. 

As it has been stressed in the literature ‘, the main concern one has when looking 

for cosmological solutions of higher dimensional theories is to obtain an explanation for 

the enormous difference between the physical and the internal scale factors consistent with 

compactification. One may add that it is also very important to obtain a scenario which 

is consistent with the known liits on the time variation of the fundamental couplings. 



This implies that the internal space must have been constant or very nearly so since 

nucleosynthesis *. 

In this paper, we propose to study possible classical cosmological solutions arising 

from the bosonic sector of N=l D=lO supergravity theory9 (or equivalently the Chapline- 

Manton actionlo with the Yang-Mills field strength set to zero) which describes the maasless 

bosonic sector of the type I superstrings and of the phenomenologically more promismg 

heterotic stringli. 

We will show that thii model admits power law solutions for the scale factors and also 

de Sitter-like solutions at late times. The stability of these solutions will be analysed as 

well as some of their physical implications. 

We will start by writing the action as 

I 

s=- 
I 

MN6’M@Nq5 - AdFMNPFMNP 
6 I 

We will adopt the conventions of Weinberg’s book with G = c = tL = 1. By 

varying the action with respect to the dynamical fields we get the following field equations, 

with 

1 
RMN - p&fNR = -TMN (2.1) 

TMN = -aMdaN4 + :(@)‘~MN - 8 FMPQFL’ - 6 lF~q~FPQRg~~ 
> 
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(4) 



where capital latin indices run from 0 to 9, greek indices run fmm 0 to 3, i&k run 

from 1 to 3 and mp,p from 4 to 9. 

To solve this system of equations we must make an ansatz on the Kalb-Ramond and 

the scalar fields. The simplest choice comes from assuming that the dilaton field is a 

constant throughout space and time. If we do so then eq.(4) compells us to take a sao 

value for the Kalb-Ramond three-index field . Clearly then the problem reduces to solving 

Einstein’s equations in vacuum. 

A few words should be said about this case as it has been the object of intense 

study. This case is important because at early times the curvature terms might have 

dominated the dynamics, making the contribution from matter and fields negligible. For 

the case of anisotropic models this is certainly the situation, as the energy associated kth 

the curvature anisotropy is going to dominate over any other contribution l’ (ignoring 

quantum gravitational effects). I I 

The case where the underlying metric is that of a product of two anisotropic spaces 

(for D = 4) was studied in ref. (X3), it was found that the field equations accepted a 

Kasner-like power law solution where the internal dimension contracted while the physical 

space expanded isotropically like a radiation dominated Friedman model. The.genaral 

form of the vacuum auisotropic solution for D 1 4 has been studied in the context of the 

mixmaster models in ref. (12). In the general case the topology of space is not that of a 

product space but instead that of a simply connected manifold. The solution presented in 

r&(13) is a particular case of these models. 

In thii paper we will only consider the case where the topology of space-time ia that 

of a product of manifolds of the form M’ x B6 with a metric described by the appropriate 

Robertson-Walker line element’. 
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ds’ = -dP + R3(t)‘&(X)&‘dti’ + &(t)2~m~(y)df’dy” (5) 

The general solution for the case where both manifolds are flat is given by a Kasner-like 

power law solution similar to that found in m&(13), 

R3 = R&--s + ; I& = R&i @J-l) 

R3 = R30t: ; & = R&-f @4 

So the internal space become smaller while the physical space expands or viceversa. 

There is a trivial solution where both radii are static, so describing a lO-dimensional 

Miiowski space-time of the form Ml0 = M’ x MB. 

If we now allow the curvatures to be non-zero, then we can find the following power 

law solutions 

R3 = R3ot ; & = R&t (7) 

with k3 = -4Ri,,ks = -iGo. Thii is not a very interesting solution as it predicts 

an expansion for both the internal and the physical radii. 

If, on the other hand we now take FMNP = 0, we do not require 4 = ~$0. Then eq. 

(3) is identically satisfied and the action describes Einstein gravity with a massless scalar 

field. Eq. (4) now gives 

aM (@a”+) = 0 (8) 

if we now assume the dilaton is a homogeneous field we get, 
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d=&=+ 
and the field equations now accept the solution, 

(Q-1) 

R3 = Raot-i ; & = &zot: (9.2) 

and 

R3 = R3r,t- ; & = I&,,-+ : (Q-3) 

with 

,#I = a$oIn(t); k3 = ks = 0 (9.4) 

The second solution is much more interesting than the first. We can understand the 

similarity of this solution with a dust solution by noting that the scalar field scales lie the 

inverse of the volume, just like the energy density of matter (dust). There are no power 

law solutions for non-flat manifolds. 

The next step in complication arises ifwe assume both the 4 and the FMNP fields are 

only functions of time, and the F-field takes values only in the physical three space (by no 

means is this the only feasible ansatz, for some different ones see ref (14)), iie. 

&t = &ijtoF(t) (10.1) 

F mnp - - F,,vp = F,,np = 0 (10.2) 

This snsatz is consistent with having a torsion free internal manifold if we want to 

preserve SU(3) holonomy. 

We note that the no-go theorem for 10 into 4 compactification I6 will not apply here 

since the four dimensional space-time is not maximally symmetric and the dilaton plus the 

Kalb-Ramond field can, according to the ansatz, vary in time. 



Using (5) and the ansatz in (10) we can immediately integrate eq.(3) to give, 

@e+F = j(t) (11) 

with f(t) an arbitrary function of time. We require the Kalb-Ramond field defined in 

(10) to obey the Bianchi identities, 

+&PO] = 0 

this equation gives 

aF=fo 

with fo a constant. Clearly from (12) and (13) 4; iet the form of f(t) 

f(t) = fo3eh 

We are now in a position to write down the field equations, 

3% + 6% = $2 + .&FZ 
R3 a32 2 

(12) 

03) 

(14 

(15) 

(17) 

and 



(18) 

We shall see that this system of equations accepts several exact solutions. Then we 

will use one of these as an initial condition and integrate the system numerically. Based 

on this we can show that the model hss an inflationary phase, by obtainllg an exponential 

solution in the late time regime, when the Kalb-Ramond field is negligible. It is also 

interesting to note that the system does not accept a static solution unless we add a mass 

term or a self interacting term to the dilaton field present in the action, which would break 

supersymmetry explicitly. 

By direct substitution of a power law ausatz into eqs. (10) to (13) it is possible to 

show that two consistent solutions can be found, 

I / 

Rs = hot ; Rs = hot-’ ; q5 - qh, = 4h(t) 

with h = -4R,1,, ks = 0 ad do = l,,@i), and 

Rs=Raot: ; &=Rgot-+; qi-r&,+(t) 

(19) 

(20) 

with k3 = ke = 0 and 40 = In( $). R30 and & are arbitrary constants. 

By perturbing the field equations around these two solutions we discover after some 

algebra that the East one is stable while the second is not. However, we should mention that 

the growth of the instabilities is like a power law, namely, very slow (for some discussion 

about this e&ct see ref. 16). This instability could be associated with the fact that the 

model is fiat in both spaces. It is a well known fact that in four dimensions the flat FRW 

solution is unstable under small perturbations. This is interpreted by saying that any 

extra energy put in or taken out from the universe will close or open the model. 



For the moment we will concentrate on the stable solution and its physical implies- 

tions. Fit of all, it is a nice solution at least from a qualitative point of view since the 

g-physical space expands while the internal space contracts. However, if thii expansion 

rate is not decreased at late times, the solution would be completely unacceptable since it 

would mess up nucleosynthesis. Nevertheless, we do expect the influence of other fields to 

become the leading terms in the energy-momentum tensor and slow down the expsnsion. 

Radiation at late times will undoubtedly change the expansion rate of both manifolds. 

If we accept thii fact we can now turn thii rapid expansion to our advantage and use 

it to produce inflation. Entropy production in the non-compact dimensions is obtained by 

decreasing the mean volume due to the contraction of the compactified dimensions 1’. 

For the solution we are interested the mean spatial volume decreases lie 

v - (g~,b)k _ t-t’ ’ 

We would like to develop a rough calculation to show that even a power law solution 

may produce su5cient inflation. We shall assume that the total entropy is adiabatically 

conserved and has the required value (how thii total entropy was generated may depend 

on the quantum era prior to thii classical approximation. In any case this is a standard 

assumption for these models) ‘*, 

S - 10’s - R&R&Tf z R&R&~ (22) 

where the ‘i’ and ‘f’ labels refer to two times, before and after inflation. Following 

Abbott et.ul.‘*, we take the final value of R ef, to be of the order of the Planck length, 

thus assuming some sort of quantum mechanism to stop the collapse of the internal radius 

to a singularity. Also, in order to avoid massive excitations of the internal modes, we 

take Tf 5 & 5 1 (Lpr - 1). According to the authors in ref.(lS), there are two ways 
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of obtaining enough inflation; The Erst is to have a large number of internal dimensions 

(around 40) and the second is to have a very large initial size for the internal manifold (for 

an alternative approach see ref.(lQ)). In our case, the number of dimensions is tied thus 

forcing us to adopt the second point of view. Although assuming a highly asymmetric set 

of initial conditions for the physical and internal radii may sound rather unnatural, our 

ignorance of the proper initial conditions allows us to do so, if the internal dimensions 

decouple after a not so long period (againsafely before nucleosynthesis). Also, the fact 

that we obtain a t-r behaviour for the internal space, makes it more natural to have a 

‘Cigar-like’ configuration for the initial singularity. 

Thus, taking R3i - 1 we obtain that 

Rsf - 1Oy (23) 
4 / 

For a compactification temperature close to the Planck energy, Ti 5 1, we see that 

tha ratios between the initial and Snal values for the internal radius and time are 

ai tf loft -w-w 
%f ti 

Thus, to obtain sufficient inflation, the internal radius has initally to be 15 orders 

of magnitude bigger than the physical radius, with the situation being reversed after the 

above period of time. If ti - tplanck, we get that the inflationary epoch ends at the GUT’s 

scale, an interesting result. 

We can now look for exponential solutions of the field equations. So, with an expe 

nential ansatz for the evolution of the scale factors we tind a consistent solution of the 

form 
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R3 = R3oe iof ; & = Rsoe--w ; $5 = fa(t + to) (W 

with to an arbitrary integration constant and Q a free parameter in the solution.These 

ten be tixed once we impose some boundary condition. What is worth pointing out is the 

fact that if R3 expands than Rs contracts and viceversa. However, for thii solution to be 

consistent we require c”F’ to be very small, thus effectively neglecting the right hand side 

of eqns. (15) to (18). Recalling that for de Sitter lie solutions we can set the curvature 

terms in Einstein’s equations to zero, we could then use the power law solution previously 

obtained as an initial condition to the numerical integration of the equations, to check 

if indeed the decay of the e$FZ term is going to trigger inflation. In figures 1 and 2 we 

show that this is indeed the case. We can also show that if we introduce a new variable 

+ = 4 - 6lnR3, we can rewrite eqn. (18) as 

Now we can obtain the solution of eq.(26) in the limit where the friction term is 

negligible, 

As can be seen from eqn.(27) $ will become more negative M it evolvea in time. This 

fact, when translated into the original variables imply that the lnR3 term dominates over 

the 4 term, showing that the term e&F’ on the right hand side of the field equations 

becomes negligible, contirming the above result. 

Fig. 1 

Fig. 2 
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The above calculations aeem to indicate that the inflationary behaviour for the physical 

space-time is a result of the interplay between the dilaton and the shrinking internalradlus. 

We should mention at this point that the model does not terminate the intlationary 

phase in a spontaneous way due to the fact that the potential for ti has no stable :minimum. 

It must be said that quantum effects coming from one loop corrections on the matter 

fields, or the Casimii forces, will probably play an important role at these energies, and 

were neglected for simplicity. In fact, depending on the ansatz for the Kalb-Rsmond field, 

it can be shown that these effects stabiiize the potential for the internal radius (taken to 

be an effective scalar field), thus generating an effective cosmological constant that will 

drive au inflationary period which ends when the internal radius becomes constant so. 

For our model to have a successful mflation we require the density perturbations to be 

within the acceptable value z* when they leave the de Sitter phase and cross the horison 
I I I 

(we will denote the horizon time by an H subscript) 

this condition fixes the value of a. 

We shall now summarize our results. Taking the bosonic part of the superstring action 

in the low energy lit we looked for cosmological solutions, in particular power law and 

exponential solutions. Before studying the full action with the Kalb-Ramond and dilaton 

fields ss functions of time, we aualyaed briefly the simpler cases where either the dilaton 

field ls a constant (which implies that FMNP = 0) or the Kalb-Ramond field is taken 

to be zero (which implies that 4 - V-l). For the full action we found that the power 

law solution corresponds to a model with an open 3 space (negative curvature) and a ilat 

internal space while the exponential solution is consistent with having a flat 3 dimensional 

space and a flat internal space. We also d&used the possibility of having a power law 
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type inflation provided that we believe the total entropy is adiabatically conserved and 

that suitable initial conditions can be imposed on this model, in order to obtain enough 

entropy production in the physical space-time. 

The flat model also contains a power law behaviour as a particular solution. However, 

this proved to be unstable. Thii wss later used BS a valid initial condition for numerical 

integration. From the information gathered in this way we discovered that the behaviour 

for late times was exponential in time. Thii WBS confirmed in an analytical way by finding 

explicitly thii solution. The solution contained one free parameter associated in a natural 

way with a cosmological constant. The value for this parameter was then restricted by 

demanding the density contrast to be consistent with observations. 

Finally, it is interesting to note that the action considered here seems to be unique 

in giving a shriiing internal space for a variety of field configurations. To the best of 

our knowledge, this does not seem to be the case in other supergravity models at least in 

power law form (see, for example, refs. (7) and (14)). Thii nice qualitative cosmological 

behaviour coming from super-string models is very encouraging. 
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Figure Caption 

Fig. I The time evolution for the two scale factors and the dilaton field ia shown. 

Tie is in units of the Planck time. 

Fig. 2 We show the time behaviour of the term e&F2 for the flat (k3 = b = 0) 

geometry case. In the lit when thii term is negligible, the exponential solution t&m 

over. 
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